

Available online at www.sciencedirect.com

JOURNAL OF CATALYSIS

Journal of Catalysis 246 (2007) 1-9

www.elsevier.com/locate/jcat

A fast transient kinetic study of the effect of H_2 on the selective catalytic reduction of NO_x with octane using isotopically labelled ¹⁵NO

J.P. Breen*, R. Burch, C. Hardacre, C.J. Hill, C. Rioche

CenTACat, School of Chemistry and Chemical Engineering, Queens University Belfast, BElfast, BT9 5AG, Northern Ireland, UK

Received 26 September 2006; revised 5 November 2006; accepted 7 November 2006

Available online 8 December 2006

Abstract

The H₂-assisted hydrocarbon selective catalytic reduction (HC-SCR) of NO_x was investigated using fast transient kinetic analysis coupled with isotopically labelled ¹⁵NO. This allowed monitoring of the evolution of products and reactants during switches of H₂ in and out of the SCR reaction mix. The results obtained with a time resolution of less than 1 s showed that the effect on the reaction of the removal or addition of H₂ was essentially instantaneous. This is consistent with the view that H₂ has a direct chemical effect on the reaction mechanism rather than a secondary one through the formation of "active" Ag clusters. The effect of H₂ partial pressure was investigated at 245 °C, it was found that increasing partial pressure of H₂ resulted in increasing conversion of NO and octane. It was also found that the addition of H₂ at 245 °C had different effects on the product distribution depending on its partial pressure. The change of the nitrogen balance over time during switches in and out of hydrogen showed that significant quantities of N-containing species were stored when hydrogen was introduced to the system. The positive nitrogen balance on removal of H₂ from the gas phase showed that these stored species continued to react after removal of hydrogen to form N₂. © 2006 Elsevier Inc. All rights reserved.

Keywords: H₂ effect; SCR; NO_x; deNO_x; Fast transient kinetics; Isotopic labelling; ¹⁵NO; Ag/Al₂O₃

1. Introduction

Since the pioneering work of Iwamoto et al. [1] and Held et al. [2], many papers have been published on the hydrocarbon selective catalytic reduction (HC-SCR) of NO_x to N₂. Numerous catalyst formulations have been tried and tested under various different reaction conditions. A small number of catalyst combinations have shown promise; of these, a low-loading Ag/Al₂O₃ catalyst appears to be the most promising [3]. These catalysts are active and selective for N₂ production using various hydrocarbon feeds. However, the temperature window for NO_x reduction is narrow, and these catalysts are not sufficiently active in the low-temperature region (150–300 °C) typical of some lean-burn engine exhausts (especially diesel engines).

The discovery that adding small amounts of hydrogen could dramatically improve the performance of Ag/Al₂O₃ catalysts in the HC-SCR reaction has resulted in renewed interest in these

Corresponding author. E-mail address: j.breen@qub.ac.uk (J.P. Breen). systems [4,5]. Since then, several authors have investigated the factors influencing the "hydrogen effect" over these catalysts, including the nature of the active site and the effect of hydrogen on the reaction mechanism [6–25].

Hydrogen promotes NO_x reduction over Ag/ γ -Al₂O₃ catalysts when using a range of lower alkanes and alkenes [6] and higher alkanes [16,19] as reductants. The "hydrogen effect" appears to be limited to Ag-based catalysts but depends greatly on the support used; the activities of Ag supported on TiO₂, ZrO₂, SiO₂, or Ga₂O₃ are not enhanced by the addition of hydrogen [6]. However, Ag/ γ -Al₂O₃ and Ag/MFI catalysts [9,10, 26] show markedly improved performance after the addition of hydrogen to the feed. The effect of hydrogen is reversible, and removal of hydrogen results in decreased NO_x conversion, but the activity can be rapidly recovered by reintroducing the hydrogen [16]. These cycles can be repeated without any loss of catalyst performance.

There is general agreement about the positive effect of hydrogen on activating various different reductants and on the overall rate of the HC-SCR NO_x reduction reaction. However, debate continues on the mechanism by which the hydrocarbon

^{0021-9517/\$ -} see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2006.11.017

and NO are activated. Several authors have proposed that hydrogen promotes the reaction by removing a poison that inhibits the reaction. Based on spectroscopic evidence. Burch and coworkers [16,21] and Sazama et al. [19] have proposed that the key role of hydrogen is to remove Ag⁺CN, which blocks the active site during the SCR reaction. Bion et al. [27] proposed that the slow step in the SCR reaction is the transformation of Ag⁺CN species to Al³⁺_{tetra}NCO species. Therefore, it is reasonable to propose that one role of hydrogen could be to speed up this slow step in the reaction. Isocyanate is readily hydrolvsed to form ammonia, which can subsequently react with NO to form N₂. However, it is clear from the literature that the SCR reaction is very complex and that the rate-determining step(s) can change depending on the temperature of the reaction and the composition of the feed. For example, silver cyanide species were not observed at low temperatures (<250 °C), and so under these conditions, it was speculated that the Ag/Al₂O₃ catalyst might be poisoned by strongly bound nitrates and that hydrogen could promote the reaction by removing these species [17]. Brosius et al. [15] have shown that in the absence of a hydrocarbon, hydrogen can promote the removal of nitrates from Ag and the formation of nitrates on the Al₂O₃ support. They speculated that the reduced Ag may then promote the partial oxidation of the hydrocarbon. More recent work by Shimizu et al. [28] also suggests that adding H₂ can retard nitrate poisoning, although they emphasised that the essential role of H_2 is in the reductive activation of molecular oxygen into reactive oxygen species involved in the oxidative activation of the hydrocarbon. On a similar theme, Bentrup et al. [14] found that the type of adsorbed NO_x species formed on the surface is important. Nitrato and acetate species found during the SCR reaction are relatively unreactive. H₂ promotes the formation of nitrite and nitro species, which are much more reactive than nitrato species and more readily able to activate the hydrocarbon.

Shibata et al. [11] carried out a detailed study of the mechanistic cause of enhancement of C_3H_8 -SCR activity by adding H₂ over Ag/Al₂O₃ using in situ FTIR spectroscopy. They proposed that adding H₂ results in the promotion of the partial oxidation of C₃H₈ to mainly surface acetates, which they suggest is the rate-determining step of C₃H₈-SCR in the absence of H₂.

Eränen et al. found that gas-phase species also need to be taken into account when discussing the SCR reaction [29]. They showed that HC-SCR over Ag/Al₂O₃ does not occur exclusively on the surface of the catalyst, but that significant reactions occur between reactive gas-phase species, leading to the production of N₂. More recently, these authors investigated the effect of hydrogen on the production of gas-phase species during the SCR reaction [20]. Hydrogen was shown to have two main functions: (1) contributing to improved oxidation of a wide variety of different surface species, resulting in faster production of key intermediates, and (2) aiding in the formation of activated NO_x species for the gas-phase reactions.

Based on experiments in which hydrogen peroxide and hydrogen were used to promote the SCR reaction, Sazama et al. [30] invoked highly reactive hydroxyl and hydroperoxy radicals in their reaction mechanism. Fricke et al. [13] speculated that highly active O surface species are important in the H_2 -assisted SCR mechanism. In their recent review of the SCR reaction over Ag/Al₂O₃ catalysts, Shimizu and Satsuma [23] invoked the formation of a hydride species on silver clusters that then reacts with oxygen to form a reactive oxidant such as hydroperoxy radicals, peroxide or superoxide ions as the key steps in the promotional effect of hydrogen.

In summary, all of the previous studies clearly show that hydrogen promotes the number and quantity of surface species during the SCR reaction. The large number of surface species produced and complex nature of the SCR reaction make identifying the main role of hydrogen in the reaction mechanism difficult. To increase the rate of NO_x conversion, the hydrogen must accelerate the rates(s) of the slow step(s) in the reaction. The slow step(s) are likely to vary depending on the reaction temperature and feed conditions.

In this study, transient kinetic analysis coupled with isotopically labelled ^{15}NO is used to gain insight into the reaction mechanism, especially with respect to the effect of H₂ concentration.

2. Experimental

The catalyst, provided by Johnson Matthey, was prepared by impregnating γ -Al₂O₃ with a silver nitrate solution, followed by drying and calcination to give a sample with a Ag metal loading of 2 wt%. Catalyst testing was performed using a bench flow reactor consisting of a quartz tube (3 mm i.d.) enclosed in an electric furnace. The catalyst sample (0.1 g, with particle size 250–425 µm) was held in place between two plugs of quartz wool, and a thermocouple was placed just after the catalyst bed. The reactant gases NO (1% ¹⁵NO/Ar or ¹⁴NO/Ar), CO₂ (100%), H₂ (5% H₂/Ar), O₂ (100%), and Kr (1% Kr/Ar) and the carrier gas Ar were fed from independent mass flow controllers, while *n*-octane was fed using a Razel syringe pump and H₂O was supplied using a Bronkhorst controlled evaporator mixer. All reactor lines were heated to prevent condensation. The concentrations of the reactants used were 720 ppm of NO, 540 ppm of *n*-C₈H₁₈, 7.2% of CO₂, 7.2% of H₂O, 4.3% of O₂, 0.72% of H₂ (when added), and 3.7% of Kr (when added). In some experiments, lower concentrations of H₂ were used. The total flow rate was 276 ml min⁻¹.

A fast switching experimental apparatus was used, using helium-actuated high-speed switching VICI valves. The fourway valves allow rapid switching between two gas mixtures in <20 ms. Furthermore, great care was taken to limit as much as possible any dead volume. Considering the inner diameter and length of the tubing, the reactor and the gas flow, the purge time was estimated to be <20 ms. The analysis was done using a Hiden HPR 20 mass spectrometer with a short capillary connected as close as possible to the exit of the catalyst bed. The global analysis time (including switch time, purge time, and the time for the sample to travel through the capillary to the detector) was <150 ms.

Gas flows were carefully equilibrated, and micrometric needle valves were strategically positioned to equilibrate the pressure between the gas flows on each side of the four-way valves with a high-sensitivity differential pressure detector. This avoided the production of spikes on the MS signal when switching from one mixture to another.

For most of the experiments, isotopically labelled ¹⁵NO was used. This allowed monitoring of the potential products ${}^{15}N_2$, ¹⁵N₂O, and ¹⁵NO₂ without interference from the signals from CO and CO₂ which overlap with ¹⁴N₂ and ¹⁴N₂O, respectively. Kr was added to the H₂-containing feed to trace the quality of the switches and also as an internal standard. Quantification was carried out with reference to the Kr signal. For most of the experiments, the following mass-to-charge (m/e) ratios were monitored as a function of time: 2 (H₂), 31 (15 NO), 30 (15 N₂), 46 ($^{15}N_2O$), 47 ($^{15}NO_2$), 57 (n-C₈H₁₈), and 82 (Kr). For the experiments with ¹⁴NO, a m/e ratio of 30 (¹⁴NO) was monitored. For both the ¹⁴NO and ¹⁵NO experiments, various other m/e ratios were also logged to pick up traces of some of the other gases, such as NH₃, CH₃CN, and HCN, that also can be formed under SCR conditions [31]. With quantification of ¹⁵Ncontaining species, it was possible to monitor the ¹⁵N balance as a function of time during the switching experiments. The ¹⁵N balance was calculated as

 15 N balance = 2 × 15 N₂ produced/ 15 NO consumed.

At 400 °C (result not shown here), the only product detected was ${}^{15}N_2$; the average ${}^{15}N$ balance (over a series of switches of H₂ into and out of the feed) at this temperature was $99 \pm 3\%$. At 245 °C, the ${}^{15}N$ balance ranged from 98 ± 3 to $101 \pm 3\%$ (Table 1) depending on the partial pressure of H₂.

Fig. 1 shows the results of a typical experiment in which H_2 was switched into and out of the SCR mix. Here 3.7% Kr was added to the H_2 -containing feed as a tracer. The response of the Kr signal during the switches clearly shows that the system gives very good resolution for the switches, the typical time for the Kr signal to decrease to <3% of its initial value when

switched out of the gas stream was <1 s; the time for the Kr signal to attain its steady-state value when it was switched into the gas stream was also typically 1 s. In addition, the response of ¹⁵NO to the introduction of H₂ is essentially instantaneous and reaches its steady-state value in 1 s.

3. Results

The results in Fig. 2 show the effect on the reactant and product concentrations of switching 0.72% hydrogen into and out of the SCR feed stream as a function of time on stream. $^{15}N_2$ was the main product detected; there was no evidence of $^{15}N_2O$ or $^{15}NO_2$ formation. There was some evidence of the formation of

Table 1

Average conversions of reactants and ^{15}N balance during the octane SCR reaction with and without H₂ as a function of H₂ concentration during transient conditions (60 s switches) at 245 $^{\circ}C$

	Feed	H ₂ concentration (%)		
		0.05	0.10	0.72
NO conversion (%)	Average	12	19	50
	H ₂	26	38	92
	No H ₂	-2	-1	7
N balance (%)	Average	101	98	99
	H ₂	90	84	84
	No H ₂	112	113	113
C ₈ H ₁₆ conversion (%)	Average	13	26	28
	H ₂	24	41	47
	No H ₂	2	11	7
H ₂ conversion (%)	H_2	46	43	38

Fig. 1. Mass spectrometer response for ¹⁵N₂, ¹⁵NO, H₂, and Kr when switching 0.72% H₂ in and out of a SCR feed stream over the catalyst at 300 °C.

Fig. 2. Changes in (a) ¹⁵NO conversion and ¹⁵N₂ production and (b) n-C₈H₁₈ conversion and H₂ concentration as a function of time during 60 s switches of 0.72% H₂ in and out of the SCR mix over the catalyst at 245 °C.

small amounts of an NH-type species at 245 °C; we discuss this in more detail later.

Fig. 2 shows some interesting features in the transient responses of the products and reactants. As expected, adding hydrogen promotes the conversion of NO and $n-C_8H_{18}$ at 245 °C [16]. Fig. 2a shows that ¹⁵NO conversion increased rapidly on introduction of H₂ and then remained constant in the presence of H_2 over 60 s. The average conversion of ^{15}NO was 92% (Table 1). After H₂ was removed from the feed, there was a significant time lag in the decreased conversion of ¹⁵NO. The conversion decreased sharply from 92 to 25% in 1 s, then decreased slowly to 0% over the remaining 59 s. An average conversion of 7% was obtained during the 60 s after the switch out of H₂. This should be compared with the situation under normal steady-state conditions, in which no conversion of ¹⁵NO occurred at 245 °C. This means that H₂ has a residual effect on ¹⁵NO conversion on removal of H₂ from the gas phase. If there were no residual effect, then ¹⁵NO conversion would be expected to decrease rapidly after removal of H₂ from the gas stream. Conversions of ¹⁵NO were similar when H₂ was

present either during steady state (93%) or under transient conditions (92%).

The ¹⁵N₂ trace (Fig. 2a) varied considerably over time at 245 °C. In contrast to ¹⁵NO conversion, the ¹⁵N₂ signal increased slowly when H₂ was present in the SCR mix. There was an initial sharp decrease in ¹⁵N₂ production when H₂ was switched out of the mix, followed by a slow decrease in the signal over the remaining 60 s of the period without H₂. These trends were repeated on reintroduction of H₂.

Interestingly, under our realistic experimental conditions, the concentration of hydrogen exiting the catalyst bed was 0.45%, showing that only 38% of the H₂ was converted. Thus hydrogen can have a promotional effect along the full length of the catalyst bed (Fig. 2b). Adding H₂ also promoted conversion of n-C₈H₁₈, with an increase from 7 to 47% on addition of H₂ before a rapid decrease on removal of H₂ from the feed stream.

The effect of hydrogen was further investigated by studying the transient kinetics of switching in and out hydrogen at lower concentrations. Fig. 3 shows that decreasing the hydrogen concentration resulted in lower conversions of ¹⁵NO during

Fig. 3. Changes in ¹⁵NO conversion over time during 60 s switches of H_2 in and out of the SCR mix over the catalyst as a function of H_2 concentration at 245 °C.

the SCR reaction. This is in agreement with Satokawa et al. [6], who showed that even at low levels of H₂ (227 ppm), the NO_x SCR reaction can be promoted with propane. However, the decreased conversion of ¹⁵NO is not linear with decreasing H₂ concentration. The average conversions of ¹⁵NO are 26%, 38%, and 92% for the addition of 0.05%, 0.10%, and 0.72% H₂, respectively. The changes in the conversion of ¹⁵NO on removal of H₂ differs for the lower concentrations, with a much sharper decrease in ¹⁵NO conversion on removal of 0.05 and 0.10% H₂ compared with removal of 0.72% H₂.

Fig. 4 shows ${}^{15}N_2$ production as a function of time for different H₂ concentrations during the switches. A similar trend is apparent, with ${}^{15}N_2$ production increasing with introduction of H₂. ${}^{15}N_2$ production also increased with increasing H₂ concentration, which is consistent with increasing ${}^{15}NO$ conversion. Nitrogen production decreased slowly when H₂ was removed, providing evidence of catalyst activity after removal of hydrogen from the gas stream.

It is evident from the data in Figs. 2–4 that steady-state conditions (especially with respect to N₂ production) were not attained within 60 s of a switch in feed at 245 °C. The varied evolution of ¹⁵NO and ¹⁵N₂ concentrations over the course of the cycles leads to a complex ¹⁵N balance (Fig. 5), which varies significantly with time. The trends are the same for hydrogen concentrations ranging from 0.05 to 0.72%. Clearly, transient ¹⁵N balances significantly above and below 100% were obtained. A ¹⁵N balance >100% implies that ¹⁵N is released from the catalyst, whereas a balance <100% suggests that ¹⁵N

Fig. 4. Changes in $^{15}N_2$ production over time during 60 s switches of H₂ in and out of the SCR mix over the catalyst as a function of H₂ concentration at 245 °C.

is stored on the catalyst. Table 1 shows that despite the large swings in the ¹⁵N balance over a series of cycles, the overall balance was 100% (within experimental error).

There was an initial sharp loss of nitrogen balance when H_2 was introduced into the SCR feed stream (Fig. 5), which recovered slowly to a value approaching 100% after 60 s. For example, the average nitrogen balance over the course of 60 s when 0.72% H_2 was present was 84% (Table 1). This suggests that ¹⁵N was initially stored when H_2 was introduced. The reverse was true when H_2 was removed; in this case there was an upward spike in the balance, followed by a slow decrease toward 100% over time, giving an average balance of 113%, indicating that ¹⁵N is released when H_2 is removed. The sums of the balances with and without H_2 were 101%, 98%, and 99% for 0.05%, 0.10%, and 0.72% H_2 , respectively.

An important observation from the data in Figs. 1–5 is that they clearly show that hydrogen has an effect on the SCR reaction after it has been removed from the gas stream. The effect differs depending on the concentration of hydrogen added to the feed. This is most evident for ¹⁵NO conversion, which decreases slowly for 0.72% H₂ but instantaneously for 0.05 and 0.10% H₂. The data in Fig. 6 showing the evolution of H₂ as a function of time during the cycles may offer an explanation for the ¹⁵NO conversion data. This shows that the hydrogen concentration decreased much more slowly on removal of 0.72% H₂ from the stream than 0.10 or 0.05% H₂. This slow de-

Fig. 5. Changes in 15 N balance as a function of time on stream during 60 s switches of 0.72, 0.10, and 0.05% hydrogen in and out of the SCR feed at 245 °C.

crease in H₂ cannot be attributed to a delay in flushing the system of residual gas phase H₂, because the H₂ concentration decreased to zero through a blank reactor in <3 s after the switch out, and remained at this level until the H₂ was switched back in again. It is unlikely that the hydrogen release is due to release of stored H on the surface of the catalyst. Although Baba et al. [32] have shown that hydrogen dissociates over Ag_3^+ sites to generate an acidic proton and Ag_3 -H, it is unlikely that the H would desorb from the surface as H₂ in an oxygen-rich atmosphere. The slower decrease in H₂ concentration at 245 °C probably has another explanation. For example, Eränen et al. [20] speculated that H₂ could be produced by partial oxidation of a hydrocarbon. Regardless of the H₂ source, the promotional effect of residual H₂ can explain the slow decrease in ¹⁵NO conversion after switching out 0.72% H₂ from the feed.

Fig. 6 shows that the hydrogen concentration decreased sharply on removal of 0.05 and 0.10% H_2 from the feed. The trace for the lower concentrations is similar to that in a blank reactor. Thus, the presence of residual hydrogen cannot explain the nitrogen production in the 60 s after removal of 0.10 and 0.05% H_2 from the feed.

Analysis of the data also revealed the formation of ${}^{15}NO_2$ (Fig. 7) when H₂ was introduced to the feed at low concentrations (0.05 and 0.10%). The ${}^{15}NO_2$ signal returned to baseline when H₂ was removed, indicating no formation of NO₂ in the

Fig. 6. Changes in H_2 concentration over time during 60 s switches of H_2 in and out of the SCR mix over the catalyst as a function of H_2 concentration at 245 °C.

absence of H₂. Most interestingly, NO₂ was not formed at high H₂ concentration (0.72%). It was not possible to accurately quantify the NO₂ concentration. However, based on an error of $\pm 3\%$ in the mass balances, the average concentration of ¹⁵NO₂ formed is of the order of 30 ppm.

No other species was identified during experiments with ¹⁵NO. Therefore, experiments were also carried out using ¹⁴NO to aid identification of species that may have overlapped with other fragments during the ¹⁵NO experiments. Fig. 8 shows that during the experiments in which ¹⁴NO was used instead of ¹⁵NO, a change in the signal associated with m/e = 15 was observed when 0.72% H₂ was present in the feed but not at the lower H₂ concentrations. At the lower concentrations, the signal remained at background levels for m/e = 15 when no reaction was occurring. The signal at m/e = 15 can be attributed to a ¹⁴NH⁺ ion, probably formed from gas-phase NH₃ or an amine-type species. The other ions of ammonia (NH_2^+) and NH_3^+) could not be investigated due to overlap with ions from water (m/e = 18, 17, and 16) present in large excess. Overlaps with fragments of water would explain why the NH⁺ fragment was not observed when using $^{\hat{15}}NO$. With 0.72% H₂ in the feed, the signal increased when H₂ was introduced and then decreased back to baseline levels when H₂ was removed. This suggests that NH-containing species were formed when high concentrations of hydrogen were present in the gas mix but not when hydrogen was removed. The low intensity of the peak at m/e = 15 prevented accurate quantification of

Fig. 7. Changes in 15 NO₂ production over time during 60 s switches of H₂ in and out of the SCR mix over the catalyst as a function of H₂ concentration at 245 °C.

the species. However, an average nitrogen balance of $99 \pm 3\%$ during the course of the cycles suggests that the average concentration of the NH-containing species did not exceed 30 ppm. Shimizu et al. [28] reported NH₃ formation in the gas phase during the reaction of NO + H₂ over Ag/Al₂O₃ but not in the presence of O₂. The results presented here show that NH₃ or NH-type species can be produced in the gas phase in the presence of O₂ provided that the concentration of H₂ is sufficiently high.

4. Discussion

The results obtained using isotopically labelled compounds show that adding H₂ had a direct effect on the reaction mechanism. The evolution of the ¹⁵N balance in Fig. 5 and data in Table 1 show that ¹⁵N-containing species were stored and released during the pulsing of H₂. For example, at 245 °C, 16% of ¹⁵N passing through the catalyst was stored over the course of 60 s when 0.72% H₂ was present in the feed and released when H₂ was removed. The NO_x storage/release values were similar for 0.05 and 0.10% H₂.

This is consistent with the findings of several researchers, including Wichterlová et al. [21], who found a significantly increased intensity of adsorbed species using DRIFTS analysis to study the effect of adding H_2 to the decane SCR reaction. Among the species that demonstrated an increase in intensity

Fig. 8. Changes in mass spectrometer signal for m/e = 15 as a function of time during switches of different concentrations of H₂ in and out of the ¹⁴NO SCR reaction.

were nitrates, isocyanates, and oxygenated hydrocarbons. The work of Shimizu et al. [28] provides evidence that NO can react with H₂ (in the absence of O₂) over a Ag/Al₂O₃ catalyst to produce gas-phase NH₃, NH₃ coordinatively bound to the surface, and surface NH⁴⁺ species. In our case, NH-type species were observed in the gas phase (in the presence of O₂) at high concentrations of H₂ (0.72%), suggesting that NH-type species were also formed and stored on the catalyst surface.

Regardless of whether the species released from the surface when H₂ was removed from the gas phase were NH₃, amine species, or H₂, the availability of these highly reactive reductants promoted the SCR reaction after H2 was removed from the gas phase, as evidenced by continued production of ${}^{15}N_2$. The positive nitrogen balance in the absence of gas phase H₂ suggests that N₂ was produced from reaction of stored species or alternatively by reaction of NO with released NH-type species in the gas phase. Eränen et al. [20] showed that NH₃ can react with NO in the gas phase to produce N2. Moreover, Richter et al. [12] reported that Ag/Al₂O₃ is an active catalyst for the NH₃-SCR reaction and that adding H₂ also has a promotional effect on this reaction. In a recent TAP study of the NH₃-SCR reaction, Kondratenko et al. [33] found that NH⁺ fragments play key roles as reaction intermediates in a coupling reaction between NO and NH₃ to produce N₂.

It should be noted that the presence of gas-phase NH-type species is not a necessary requirement for enhanced activity when H_2 is present. The data in Fig. 3 show that H_2 can enhance

Fig. 9. Schematic diagram of the H₂ assisted SCR reaction over Ag/Al₂O₃, adapted from Refs. [20,34].

the activity of the SCR reaction at much lower concentrations of H₂ (0.05 and 0.1%) with no production of gas-phase NHcontaining species The conversion of ¹⁵NO was not as high as that observed for 0.72% H₂ addition, and the decrease in ¹⁵NO conversion was much faster. In addition, gas-phase NO₂ was produced when low concentrations of H₂ were used but not when 0.72% H₂ was used.

These results could be rationalised by reference to a slightly modified version of a reaction mechanism (Fig. 9) originally proposed by Meunier et al. [34] but more recently modified and updated to include gas-phase reactions by Eränen et al. [20]. In the absence of H₂, the reaction can proceed by the mechanism proposed in Fig. 9; however, at low temperatures, the reaction is slow, due primarily to poisoning of the catalyst by strongly bound nitrates and/or Ag⁺CN [16,17]. On introduction of H₂, nitrates are readily reduced to nitrites [15,17,28]. These nitrites could then desorb as gas-phase NO2 or react on the surface with a number of different reduced N-containing adsorbed species to produce N₂. The removal of strongly bound nitrates from Ag sites is likely to allow a significant increase in both oxidation of NO to NO₂ and partial oxidation of the hydrocarbon. The reduction of nitrate to nitrite and subsequent release of NO₂(g) is a fast reaction, as evidenced by the rapid appearance of gas-phase NO2 on addition of low concentrations of H2 (Fig. 7). At low H_2 partial pressure, virtually all of the H_2 will be utilised in this initial step of the reaction, and there will be insufficient partial pressure of H2 to promote subsequent steps in the mechanism. It should be noted that H₂ conversion was <50% at all hydrogen concentrations, indicating the presence of gas-phase H₂ throughout the catalyst bed. However, for low feed concentrations of H₂, the partial pressure may not have been high enough to allow H2 to compete effectively with other strongly adsorbed molecules, thereby resulting in lower surface

coverage of H atoms. This low surface coverage may have prevented H_2 from having a promotional effect on other steps of the reaction (e.g., NH_x formation), which can require high surface coverage of H atoms.

However, if the H₂ concentration is higher, as in the case of the experiments with 0.72% H₂, then there is the potential for further improving the rate of reaction by promoting other slow steps in the reaction. The transient kinetic results show that at higher H₂ concentrations, gas-phase NH-containing species were formed, and gas-phase NO₂ was no longer produced. This indicates that the residual H₂ not consumed in the reduction of nitrates to nitrites was free to promote the NH_x-forming reactions. The reaction schematic suggests that the hydrogen can promote any number of the steps, for example, nitro \rightarrow oxime \rightarrow nitrile N oxide \rightarrow isocyanate \rightarrow amine, leading to ammonia formation [34].

Another possibility proposed by Sazama and Wichterlova [30] and Satsuma et al. [26] is that the combination of hydrogen and oxygen on the silver surface can result in the formation of hydroperoxy radicals (HO₂), peroxide (O_2^{2-}) , or superoxide ions (O_2^-) . Perhaps low concentrations of H₂ are sufficient to promote the formation of these active oxygen species, which can readily react with NO to form NO₂ (g or ads) and in turn activate the hydrocarbon and thus promote the SCR reaction. At higher H_2 concentrations, the AgO_x surface may become more reduced, allowing dissociation of NO on the surface and formation of a greater quantity of reduced NH-containing species (e.g., NH₃ and amine-type species). These reduced NHcontaining species were very reactive for NO_x reduction to N_2 . Kondratenko et al. [33] found that for the NH₃ SCR reaction, a reduced Ag surface is much more active than an oxidised surface. They related this to the ability of reduced Ag to dissociate NO and O₂.

5. Conclusion

Based on our findings, we can draw the following conclusions:

- 1. Increasing hydrogen partial pressure results in increased NO and hydrocarbon conversion.
- The change in nitrogen balance as a function of time on stream during switches of hydrogen in and out of the reaction mix demonstrates that nitrogen-containing species are stored on the surface of the catalyst in the presence of hydrogen and released as N₂ on removal of hydrogen from the feed stream.
- 3. At 245 °C, the introduction of 0.72% H₂ promotes formation of gas-phase NH-type species, whereas at lower H₂ concentrations (0.05 and 0.10%), gas-phase NO₂ is produced instead of NH₃. It is proposed that the hydrogen promotes the reaction in two different ways depending on the partial pressure of H₂. At low concentrations, it promotes the formation of NO₂ (g and/or ads), which can directly activate the hydrocarbon. In addition, the release of NO₂ may be an indication that H₂ promotes the decomposition of strongly bound nitrates that may be poisoning the reaction. Sufficiently high hydrogen partial pressure can result in the formation of reduced NH-containing species, which can readily react with NO_x (g and/or ads) to form N₂.

Acknowledgment

The authors gratefully acknowledge funding for this work from the Support Programme for University Research (SPUR) and CenTACat.

References

- M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo, N. Mizuno, Shokubai (Catalyst) 32 (1990) 430.
- [2] W. Held, A. König, T. Richter, L. Pupper, SAE Paper 900496 (1990).
- [3] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283, and references therein.
- [4] B. Krutzsch, Ch. Goerigk, S. Kurze, G. Wenninger, W. Boegner, F. Wirbeleit, U.S. Patent 5,921,076 (1999).
- [5] S. Satokawa, Chem. Lett. (2000) 294.
- [6] S. Satokawa, J. Shibata, K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179.

- [7] A. Satsuma, J. Shibata, A. Wada, Y. Shinozaki, T. Hattori, Stud. Surf. Sci. Catal. 145 (2003) 235.
- [8] J. Shibata, Y. Takada, A. Shichi, S. Satokawa, A. Satsuma, T. Hattori, Appl. Catal. B 54 (2004) 137.
- [9] J. Shibata, Y. Takada, A. Shichi, S. Satokawa, A. Satsuma, T. Hattori, J. Catal. 222 (2004) 368.
- [10] J. Shibata, K.-i. Shimizu, Y. Takada, A. Shichi, H. Yoshida, S. Satokawa, A. Satsuma, T. Hattori, J. Catal. 227 (2004) 367.
- [11] J. Shibata, K.-i. Shimizu, S. Satokawa, A. Satsuma, T. Hattori, Phys. Chem. Chem. Phys. 5 (2003) 2154.
- [12] M. Richter, R. Fricke, R. Eckelt, Catal. Lett. 94 (2004) 115.
- [13] M. Richter, U. Bentrup, R. Eckelt, M. Schneider, M.-M. Pohl, R. Fricke, Appl. Catal. B 51 (2004) 261.
- [14] U. Bentrup, M. Richter, R. Fricke, Appl. Catal. B 55 (2005) 213.
- [15] R. Brosius, K. Arve, M.H. Groothaert, J.A. Martens, J. Catal. 231 (2005) 344.
- [16] R. Burch, J.P. Breen, C.J. Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eränen, F. Klingstedt, L.-E. Lindfors, Top. Catal. 30–31 (2004) 19.
- [17] R. Burch, Catal. Rev. Sci. Eng. 46 (2004) 271.
- [18] J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, J. Phys. Chem. B 109 (2005) 4805.
- [19] P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve, B. Wichterlová, J. Catal. 232 (2005) 302.
- [20] K. Eränen, F. Klingstedt, K. Arve, L.E. Lindfors, D.Y. Murzin, J. Catal. 227 (2004) 328.
- [21] B. Wichterlová, P. Sazama, J.P. Breen, R. Burch, C.J. Hill, L. Čapek, Z. Sobalík, J. Catal. 235 (2005) 195.
- [22] J.P. Breen, R. Burch, C. Hardacre, C.J. Hill, B. Krutzsch, B. Bandl-Konrad, E. Jobson, L. Cider, M.V. Twigg, P.G. Blakeman, L.J. Peace, M. Preis, M. Gottschling, Appl. Catal. B (2006), doi:10.1016/j.apcatb.2006. 05.005.
- [23] K. Shimizu, A. Satsuma, Phys. Chem. Chem. Phys. 8 (2006) 2677.
- [24] F. Klingstedt, K. Arve, K. Eränen, D.Y. Murzin, Acc. Chem. Res. 39 (2006) 273.
- [25] K. Arve, H. Backman, F. Klingstedt, K. Eränen, D.Y. Murzin, Appl. Catal. A 303 (2006) 96.
- [26] A. Satsuma, J. Shibata, K. Shimizu, T. Hattori, Catal. Surv. Asia 9 (2005) 75.
- [27] N. Bion, J. Saussey, M. Haneda, M. Daturi, J. Catal. 217 (2003) 47.
- [28] K. Shimizu, J. Shibata, A. Satsuma, J. Catal. 239 (2006) 402.
- [29] K. Eränen, L.E. Lindfors, F. Klingstedt, D.Y. Murzin, J. Catal. 219 (2003) 25.
- [30] P. Sazama, B. Wichterlova, Chem. Commun. (2005) 4810.
- [31] T. Miyadera, Appl. Catal. B 16 (1998) 155.
- [32] T. Baba, N. Komatsu, H. Sawada, Y. Yamaguchi, T. Takahashi, H. Sugisawa, Y. Ono, Langmuir 15 (1999) 7894.
- [33] E.V. Kondratenko, V.A. Kondratenko, M. Richter, R. Fricke, J. Catal. 239 (2006) 23.
- [34] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, J. Catal. 187 (1999) 493.